Introduction

Topology Reconstruction Process

Results

Conclusion

Topology Reconstruction for B-Rep Modeling from 3D Mesh in Reverse Engineering Applications

Roseline Bénière^{1,2} G. Subsol¹, G. Gesquière³, F. Le Breton² and W. Puech¹

LIRMM, University of Montpellier 2/CNRS, France (1) C4W, Montpellier, France (2) Aix Marseille University, LSIS, France(3)

Introduction ●○	Topology Reconstruction Process	Results 00	Conclusion
Objective			

 Reverse engineering: discretized mesh ⇒ continuous representation ,

Introduction ●○	Topology Reconstruction Process	Results	Conclusion
Objective			

- Reverse engineering: discretized mesh ⇒ continuous representation ,
- First problem: detect the primitives ⇒ many papers,

Introduction ●○	Topology Reconstruction Process	Results	Conclusion
Obiective			

- Reverse engineering: discretized mesh ⇒ continuous representation ,
- First problem: detect the primitives ⇒ many papers, But
- Second problem: topology reconstruction \Rightarrow few papers.

Introduction ●○	Topology Reconstruction Process	Results	Conclusion
Objective			

- Reverse engineering: discretized mesh ⇒ continuous representation ,
- First problem: detect the primitives ⇒ many papers, But
- Second problem: topology reconstruction ⇒ few papers. This paper deals with this second problem

Introduction ○●	Topology Reconstruction Process	Results oo	Conclusion

Previous work

Comprehensive process

Comprehensive reverse engineering process are proposed in

few papers. Algorithms for reverse engineering boundary representation models, P. Benkö et al., Computer-Aided Design, 33(11):839–851, 2001

Introduction	Topology Reconstruction Process	Results	Conclusion
00			

Previous work

Comprehensive process

Comprehensive reverse engineering process are proposed in few papers. Algorithms for reverse engineering boundary representation models, P. Benkö et al., Computer-Aided Design, 33(11):839–851, 2001

Neighborhood

The neighborhood definition can be used to improve the remeshing, computing the real intersections. *Improving surface meshing from discrete data by feature recognition*, *C. Chappuis et al., Engineering with Computer (20), 202–209, 2004*

Introduction	Topology Reconstruction Process	Results	Conclusion
00			

Previous work

Comprehensive process

Comprehensive reverse engineering process are proposed in few papers. Algorithms for reverse engineering boundary representation models, P. Benkö et al., Computer-Aided Design, 33(11):839–851, 2001

Neighborhood

The neighborhood definition can be used to improve the remeshing, computing the real intersections. *Improving surface meshing from discrete data by feature recognition*, *C. Chappuis et al., Engineering with Computer (20), 202–209, 2004*

Edges and wires

The wires are built assembling curve intersection parts. This problem is related to Boundary Evaluation in CSG. *Incremental boundary evaluation using inference of edge classification*, J.R. *Miller, IEEE Computer Graphics & Applications* **0272**(17), 71–78, 1993

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

In [Bénière *et al.*,2011] \Rightarrow extraction of a set of primitives based on point areas defined by curvature informations.

Introduction	Topology Reconstruction Process ●○○○○○○○	Results	Conclusion

In [Bénière *et al.*,2011] \Rightarrow extraction of a set of primitives based on point areas defined by curvature informations. Then now:

● Primitives + Point Areas ⇒ Extended Areas

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

In [Bénière *et al.*,2011] \Rightarrow extraction of a set of primitives based on point areas defined by curvature informations. Then now:

- Primitives + Point Areas \Rightarrow Extended Areas
- Extended Areas ⇒ Common Points

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

In [Bénière *et al.*,2011] \Rightarrow extraction of a set of primitives based on point areas defined by curvature informations. Then now:

- Primitives + Point Areas \Rightarrow Extended Areas
- Extended Areas ⇒ Common Points
- Adjacency Graph ⇒ node = primitive

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

In [Bénière *et al.*,2011] \Rightarrow extraction of a set of primitives based on point areas defined by curvature informations. Then now:

- Primitives + Point Areas \Rightarrow Extended Areas
- Extended Areas ⇒ Common Points
- Adjacency Graph \Rightarrow node = primitive

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

In [Bénière *et al.*,2011] \Rightarrow extraction of a set of primitives based on point areas defined by curvature informations. Then now:

- Primitives + Point Areas \Rightarrow Extended Areas
- Extended Areas ⇒ Common Points
- Adjacency Graph \Rightarrow node = primitive

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

In [Bénière *et al.*,2011] \Rightarrow extraction of a set of primitives based on point areas defined by curvature informations. Then now:

- Primitives + Point Areas \Rightarrow Extended Areas
- Extended Areas ⇒ Common Points
- Adjacency Graph \Rightarrow node = primitive

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

In [Bénière *et al.*,2011] \Rightarrow extraction of a set of primitives based on point areas defined by curvature informations. Then now:

- Primitives + Point Areas \Rightarrow Extended Areas
- Extended Areas ⇒ Common Points
- Adjacency Graph \Rightarrow node = primitive

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

In [Bénière *et al.*,2011] \Rightarrow extraction of a set of primitives based on point areas defined by curvature informations. Then now:

- Primitives + Point Areas \Rightarrow Extended Areas
- Extended Areas ⇒ Common Points
- Adjacency Graph \Rightarrow node = primitive

Introduction	Topology Reconstruction Process ●●○○○○○○	Results oo	Conclusion
Valid intersec	tion computation		
Using the Prir	nitives and the Adjacency Grap	oh:	

Introduction	Topology Reconstruction Process	Results oo	Conclusion

Using the Primitives and the Adjacency Graph:

Introduction	Topology Reconstruction Process	Results oo	Conclusion

Using the Primitives and the Adjacency Graph:

Introduction	Topology Reconstruction Process	Results oo	Conclusion

Using the Primitives and the Adjacency Graph:

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

Using the Primitives and the Adjacency Graph:

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

Using the Primitives and the Adjacency Graph:

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

- For each Adjacency Graph edge \Rightarrow intersection curves,
- Distance to common points \Rightarrow validation of intersections.

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

- For each Adjacency Graph edge \Rightarrow intersection curves,
- Distance to common points \Rightarrow validation of intersections.

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

- For each Adjacency Graph edge \Rightarrow intersection curves,
- Distance to common points \Rightarrow validation of intersections.

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

- For each Adjacency Graph edge \Rightarrow intersection curves,
- Distance to common points \Rightarrow validation of intersections.

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

- For each Adjacency Graph edge \Rightarrow intersection curves,
- Distance to common points \Rightarrow validation of intersections.

Introduction	Topology Reconstruction Process ○●●○○○○○○	Results	Conclusion
Consistent in	tersection computation		

Introduction	Topology Reconstruction Process	Results	Conclusion
	00000000		

With the previous steps:

Mesh

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

With the previous steps:

Mesh Primitives

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

With the previous steps:

Introduction	Topology Reconstruction Process	Results	Conclusio
	0000000		

With the previous steps:

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

With the previous steps:

But the intersection curves between two primitives must be trimmed.

Introduction	Topology Reconstruction Process	Results	Conclusion
	0000000		

With the previous steps:

But the intersection curves between two primitives must be trimmed. Using specific points: **THE JUNCTIONS**.

Introduction	Topology Reconstruction Process	Results oo	Conclusion
lunction extr	action		

EXILACION

To extract junctions and decompose intersection curve into *edges* \Rightarrow 3 tests:

To extract junctions and decompose intersection curve into

To extract junctions and decompose intersection curve into

To extract junctions and decompose intersection curve into

To extract junctions and decompose intersection curve into

Introduction	Topology Reconstruction Process	Results 00	Conclusion
Junction extra	action		

Introduction 00	Topology Reconstruction Process	Results oo	Conclusion
Wire construct	ction		

Then the edges are assembled into wires.

Introduction 00	Topology Reconstruction Process	Results	Conclusion
Wire construc	ction		

Only one way

Introduction	Topology Reconstruction Process	Results	Conclusion
oo	○○○○○●○○	00	
Wire construc	ction		

() Only one way \Rightarrow immediate construction,

Introduction 00	Topology Reconstruction Process	Results	Conclusion
Wire construc	ction		

- **()** Only one way \Rightarrow immediate construction,
- Several possible paths

Introduction 00	Topology Reconstruction Process	Results	Conclusion
Wire construc	ction		

- **()** Only one way \Rightarrow immediate construction,
- Several possible paths ⇒ construction using weight (= distance to Extended Point Area).

0.1

0.1

0.1

0.1

0.1

Introduction	Topology Reconstruction Process	Results	Conclusion
Wire construc	ction		

- **()** Only one way \Rightarrow immediate construction,
- Several possible paths ⇒ construction using weight (= distance to Extended Point Area).

Introduction 00	Topology Reconstruction Process	Results	Conclusion
Wire construc	ction		

- **()** Only one way \Rightarrow immediate construction,
- Several possible paths ⇒ construction using weight (= distance to Extended Point Area).

Introduction	Topology Reconstruction Process	Results	Conclusion
Wire construc	ction		

Introduction	Topology Reconstruction	Process	Results ○●	Conclusion
Results and	comparison			
		0		

Wires

Primitives

Mesh

B-Rep model

00	00000000	00	00
Introduction	Topology Reconstruction Process	Results	Conclusion ●○

In this paper: a new approach to construct a consistent topology from a mesh and the corresponding set of primitives.

Introduction	Topology Reconstruction Process	Results 00	Conclusion ●○
Conclusion	and Daranastivas		

In this paper: a new approach to construct a consistent topology from a mesh and the corresponding set of primitives.

Perspective 1: improve the primitive extraction

Imprecision in the primitives parameters computation raises many problem in the topology reconstruction step (intersection computation, wire construction...)

O			
Introduction	Topology Reconstruction Process	Results	Conclusion ●○

In this paper: a new approach to construct a consistent topology from a mesh and the corresponding set of primitives.

Perspective 1: improve the primitive extraction

Imprecision in the primitives parameters computation raises many problem in the topology reconstruction step (intersection computation, wire construction...)

 \Rightarrow Find and add constraints (tangency or parallel to or...) to robustify the reconstruction process.

Introduction	Topology Reconstruction Process	Results	Conclusion ●○

In this paper: a new approach to construct a consistent topology from a mesh and the corresponding set of primitives.

Perspective 1: improve the primitive extraction

Imprecision in the primitives parameters computation raises many problem in the topology reconstruction step (intersection computation, wire construction...)

 \Rightarrow Find and add constraints (tangency or parallel to or...) to robustify the reconstruction process.

Perspective 2: accelerate the wire construction step

The weight computation for each edge and the wire construction take a lot of time.

Introduction	Topology Reconstruction Process	Results	Conclusion ●○

In this paper: a new approach to construct a consistent topology from a mesh and the corresponding set of primitives.

Perspective 1: improve the primitive extraction

Imprecision in the primitives parameters computation raises many problem in the topology reconstruction step (intersection computation, wire construction...)

 \Rightarrow Find and add constraints (tangency or parallel to or...) to robustify the reconstruction process.

Perspective 2: accelerate the wire construction step

The weight computation for each edge and the wire construction take a lot of time.

 \Rightarrow Use existing algorithms to find the optimal path in a valued graph.

Results

Thank you for your attention

QUESTIONS?

Site: www.lirmm.fr/~beniere Mail: roseline.beniere@lirmm.fr C4W site: www.c4w.com

Roseline Bénière, G. Subsol, G. Gesquière, F. Le Breton and W. Puech, Topology Reconstruction for B-Rep Modeling from 3D Mesh in reverse Engineering Applications, SPIE, San Francisco, 2012

Topology Reconstruction for B-Rep Modeling from 3D Mesh in Reverse Engineering Applications/ R.Bénière

16/16